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IN GAUSSIAN MATÉRN RANDOM FIELDS

Victor De Oliveira

Department of Management Science and Statistics
The University of Texas at San Antonio

victor.deoliveira@utsa.edu

http://faculty.business.utsa.edu/vdeolive/

Joint work with Zifei Han
University of International Business and Economics, China

Work supported by National Science Foundation



Basic Geostatistical Problem

Let z : D ⊂ Rd → R be an unknown function describing the
spatial variation of the quantity of interest over D

The stochastic approach to the modeling of this function
assumes that z(·) is a realization of a random field
{Z(s) : s ∈ D}

To make inference about z(·) we need to model the random field
Z(·) and estimate some of its probabilistic features

For most geostatistical applications d = 2
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Geostatistical Data Structure

A set of triplets

{(si,f(si), zi) : i = 1, . . . , n}

where
I s1, . . . , sn sampling locations in D ⊂ R2

I f(si) = (f1(si), . . . , (fp(si))> ∈ Rp set of p explanatory
variables taken at sampling location si

I zi is the measurement taken at sampling location si
Sn := {s1, . . . , sn} is called the sampling design

Key feature: geostatistical data usually lacks replication
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Example: Spatial Variation of Rainfall

Data consist of n = 467 measurements of daily rainfall collected
in Switzerland on May 8, 1986

• D = Country of Switzerland

• s1, . . . , sn coordinates of locations in D where tipping buckets
were placed

• zi = Rain amount recorded by the tipping bucket located at si
• f1(si) = 1 for all si (no covariates)
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Illustration
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Basic Geostatistical Model

Z(·) is a Gaussian random field with mean and covariance
functions

µ(s) := E(Z(s)) =
p∑
j=1

βjfj(s)

C(s,u) := cov(Z(s), Z(u)) = σ2Kϑ(s,u) s,u ∈ D

where
I β = (β1, . . . , βp)> unknown regression parameters
I f1(s), . . . , fp(s) known location–dependent covariates
I σ2 = var(Z(s))
I Kϑ(s,u) correlation function in R2

I ϑ = (ϑ1, . . . , ϑq)> ∈ Θ ⊂ Rq unknown correlation
parameters
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Measurements zi are often corrupted by additive measurement
error:

zi = Z(si) + εi, i = 1, . . . , n

ε1, . . . , εn
i.i.d.∼ N(0, τ2) distribution and independent of Z(·);

τ2 ≥ 0 called the nugget parameter

Model parameters: η = (β,θ, τ2), with θ = (σ2,ϑ)
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Prominent Model: Matérn Covariance Function

Isotropic Covariance Function in R2:
Cθ(r) = σ2Kϑ(r), with

Kϑ(r) = 1
2ν−1Γ(ν)

(
2
√
ν

ϑ
r

)ν
Kν

(
2
√
ν

ϑ
r

)
, r ≥ 0

r = Euclidean distance between two locations
θ = (σ2, ϑ, ν) are covariance parameters
Kν(·) is modified Bessel function of second kind and order ν

σ2: variance parameter
ϑ: range parameter
ν: smoothness parameter

8 / 73



0.0 0.5 1.0 1.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ν = 1

r

K
(r

)
ϑ

0.2

0.4

0.6

0.0 0.5 1.0 1.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ϑ = 0.4

r

K
(r

)

ν

0.5

1

1.5

0 5 10 15 20

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

ν = 1

ω

f(
ω

)

ϑ

0.2

0.4

0.6

0 5 10 15 20

0
.0

0
0

0
.0

0
4

0
.0

0
8

0
.0

1
2

ϑ = 0.4

ω

f(
ω

)
ν

0.5

1

1.5

9 / 73



Reasons for Prominence of Matérn Model

I Unlike most families indexed only by variance and range
parameters, the Matérn family is also indexed by a
smoothness parameter that controls the degree of mean
square differentiability of the random field

I In fixed–domain asymptotic framework: it is possible to
achieve efficient spatial interpolation with a misspecified
covariance model, as long as the correct and misspecified
models are compatible in some well–defined sense.
A necessary condition for two covariance functions from
the Matérn family to be compatible in that sense is that
they share the same smoothness parameter.
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Mismatch Between Theory and Practice

I The aforementioned reasons point to the importance of
modeling the smoothness of the random field, and this is
why the Matérn model is so popular in geostatistics

I On the other hand, the smoothness of the random field is
rarely estimated in current geostatistical practice, but
rather fixed in advance. It is common to use the
sub–models resulting from ν = 0.5 (exponential model) or
ν = 1.5, even though there is usually little or no a priori
information about the smoothness of a random field
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Why This Mismatch?
• There are also computational challenges when attempting to
estimate all covariance parameters

• Unqualified claim in the literature suggesting geostatistical
data have little or no information about the smoothness
parameter (e.g. Bose, Hodges and Banerjee, 2018)

Diggle and Ribeiro (2007) state that:

“. . . when using the Matérn correlation function, our experience
has been that the shape parameter κ [ν] is often poorly
identified”

“. . . we have found that, for example, estimating all three
parameters in the Matérn model is very difficult because the
parameters are poorly identified, leading to ridges or plateaus in
the log–likelihood surface”
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Common geostatistical practice:

Fix the smoothness parameter and estimate the other
covariance parameters, variance, range and nugget
This implicitly assumes at least one of the two tenets:

(a) Data contain more information about variance and range
parameters than about smoothness parameter

(b) Variance and range parameters are more important for
spatial interpolation/prediction than smoothness parameter
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Some Theoretical Results

In fixed–domain asymptotic framework:

I The parameters σ2 and ϑ cannot be consistently estimated
when d ≤ 3 (Zhang, 2004)

I The parameter ν can be consistently estimated under some
designs (Wu, Lim and Xiao, 2013; Wu and Lim, 2019;
Loh, 2015; Loh, Sun and Wen, 2021)

I For any prediction location s0 the BLUP of Z(s0) based on
a misspecified Matérn model is asymptotically efficient
when ν is correctly specified, regardless of the values of σ2

and ϑ (Kaufman and Shaby, 2013)

These facts do not support the above implicit tenets
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Example (Continuation)
Model for the square root transformed data Z(·): Gaussian
random field with constant mean and the Matérn covariance
function

The MLE of the covariance parameters are

η̂ = (σ̂2, τ̂2, ϑ̂, ν̂) = (105.09, 6.74, 73.42, 0.95)

Can use an estimate of the observed information matrix, H(η̂),
to quantify information about covariance parameters
From the output of the optimization algorithm

Ĥ−1 =


1720.183 −5.633 838.860 −2.431
−5.633 2.817 −17.850 0.474
838.860 −17.850 626.629 −5.223
−2.431 0.474 −5.223 0.105
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Information about a parameter may be quantified by inverse of
Cramer–Rao lower bound for the variance of unbiased
estimators of that parameter
For ν, this is estimated by 1/Ĥνν , with Ĥνν the ‘(ν, ν)’
diagonal element of Ĥ−1

For the Swiss rainfall data

1/Ĥνν = 9.524 and 1/Ĥϑϑ = 0.0016

This suggests data contain substantial information about ν
But not necessarily that the data are more informative about ν
than about ϑ
To make these comparable, some standarization is needed since
Ĥϑϑ depends heavily on units used to measure distance
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An equivalent visual approach to quantify information involves
inspecting the profile log–likelihoods pl1(ϑ) and pl2(ν)
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Since ϑ and ν are non–orthogonal and they are not the only
model parameters, a more complete analysis involves inspection
of joint profile log–likelihoods
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Quantifying Information About Covariance Parameters

Carry out numerical exploration to uncover how the sampling
design and true model affect the information content the data
have about the range and smoothness parameters

The information content about each covariance parameter is
measured by the vector

Inf(η,Sn) :=
(

1
I(η,Sn)σ2σ2 ,

1
I(η,Sn)τ2τ2 ,

1
I(η,Sn)ϑϑ ,

1
I(η,Sn)νν

)

I(η,Sn)σ2σ2 , I(η,Sn)τ2τ2 , I(η,Sn)ϑϑ and I(η,Sn)νν are,
respectively, first, second, third and fourth diagonal elements of
I(η,Sn)−1, and I(η,Sn) is Fisher information matrix based on
sampling design Sn when true covariance parameter is η
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Sampling Designs
Consider the following design types to assess effect of sampling
design Sn on amount of information the data have about the
range and smoothness parameters (n = 225)

Regular Random Bachoc Regular+Cluster
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Fisher Information Matrix

Let η = (η1, η2, η3, η4) = (σ2, τ2, ϑ, ν) covariance parameters
For Gaussian random fields the Fisher information matrix of η
based on the data model is the 4× 4 matrix I(η,Sn) with
entries

I(η,Sn)ij = 1
2tr
(
Ψ−1(η,Sn)Ψi(η,Sn)Ψ−1(η,Sn)Ψj(η,Sn)

)
where

Ψ(η,Sn) = σ2Σϑ + τ2In

(Σϑ)ij = Kϑ(‖si − sj‖)
Ψi(η,Sn) = (∂/∂ηi)Ψ(η,Sn)
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Computation of I(η,Sn) is involved due to required derivatives
of Bessel function Kν(x) w.r.t. x and ν

For any ϑ = (ϑ, ν) ∈ (0,∞)2 and r > 0

∂

∂ϑ
Kϑ(r) = 4ν

ν+1
2 rν+1

Γ(ν)ϑν+2 Kν−1
(2
√
ν

ϑ
r
)

and
∂

∂ν
Kϑ(r) =

(
log
(√

ν

ϑ
r

)
− ψ(ν)

)
Kϑ(r)

− h(ν)
(

r

ϑ
√
ν
Kν−1

(
2
√
ν

ϑ
r

)
−
∫ ∞

0
t sinh(νt) exp

(
−2r
√
ν

ϑ
cosh(t)

)
dt

)
,

where ψ(ν) is the digamma function and

h(ν) := 2
Γ(ν)

(√
ν

ϑ
r

)ν
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Numerical Exploration of Information Patterns

Consider Gaussian random fields with constant mean and
Matérn covariance function, observed in D = [0, 1]× [0, 1] using
one of sampling designs described before

Fix σ2 = 1 and τ2 = 0.2 and explore patterns of variation of

1
I(η,Sn)ϑϑ and 1

I(η,Sn)νν

for (ϑ, ν) in [0.05, 0.65]× [0.1, 1.5]
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In the following the spatial coordinates are re–scaled
New coordinates defined as

s̃ = (x̃, ỹ) := s
rmax

with rmax := max{||s− u|| : s,u ∈ D}
s̃ := (x, y)/

√
2 for the aforementioned region D.

Purpose of re–scaling is to compare more sensibly information
about the range and smoothness parameters, so the former may
serve as a reference to judge when the latter is substantial
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Information About the Range Parameter
Regular Random Bachoc Regular+Cluster
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Information About the Smoothness Parameter
Regular Random Bachoc Regular+Cluster
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Information About the Range Parameter Relative to
the Smoothness Parameter
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For each design the information about ν is larger than that
about ϑ for models in the ‘south–east’ corner of the correlation
parameter space.

These are models that combine a large range parameter
(strongly dependent process) and a small smoothness parameter
(non–smooth process)

The opposite holds in the rest of the space.

29 / 73



Variation of Information with Sample Size
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Figure: (a) η = (1, 0.2, 0.2, 0.5), (b) η = (1, 0.2, 0.2, 1.5),
(c) η = (1, 0.2, 0.4, 0.5) and (d) η = (1, 0.2, 0.4, 1.5). 30 / 73



Example (Continuation)

For Swiss rainfall data, Fisher information matrix evaluated at
the MLE η̂ = (σ̂2, τ̂2, ϑ̂, ν̂) = (105.09, 6.74, 73.42, 0.95) is

I(η̂,Sn)−1 =


1486.721 −5.233 2.156 −2.313
−5.233 1.273 −0.031 0.209
2.156 −0.031 0.005 −0.013
−2.313 0.209 −0.013 0.064


The (estimated) information about covariance parameters is

Inf(η̂,Sn) = (0.001, 0.786, 199.297, 15.643)

This confirms these data have substantial information about the
smoothness parameter
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Inference About Smoothness

Several methods have been proposed to estimate smoothness:

I Semiparametric methods based on the periodogram of
certain linear combinations of data observed on a regular
grid; Wu et al. (2013) and Wu and Lim (2016)

I Methods based on higher–order quadratic variations of
data observed on some random designs; Loh (2015) and
Loh et al. (2021)

I Other methods were proposed by Im et al. (2007) and
Anderes and Stein (2008)

These methods are rarely used in practice, and are not
implemented in common geostatistical software
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A Slight Reparametrization

For likelihood analysis of it is convenient to parametrize the
covariance function of the data in terms of the so–called
noise–to–signal ratio

ξ := τ2

σ2

rather than the nugget τ2

From now on the covariance parameters are

(σ2, ξ, ϑ, ν)
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MLE of Smoothness

A method implemented in several public software is that of
maximum likelihood (MLE), e.g., in the R packages geoR,
georob and ExaGeoStat. But even this method has not been
used or explored much

Because smoothness parameter of Matérn family is fixed in
most applications, sampling properties of MLE of ν are largely
unknown

We carry out a small simulation study to explore these
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Simulation Set Up

I Two designs in the study region D = [0, 1]2 of size n = 225
A 15× 15 regular grid and an irregular random design

I Models with p = 1, µ(s) = 0 and Matérn covariance
function with σ2 = 1

I Correlation parameters: ϑ is 0.1 or 0.5 and ν is 0.5 or 1.5

For each combination of design and model, simulate 1000
independent data sets under the three scenarios for the
measurement error:

S1: ξ = 0 (no measurement error) assumed known; the
parameters to be estimated are (µ, σ2, ϑ, ν)

S2: ξ = 0.2 assumed known
S3: ξ = 0.2 assumed unknown; the parameters to be estimated

are (µ, σ2, ξ, ϑ, ν)
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I Estimation was carried out using the optim function with
L-BFGS-B algorithm. The search space is ν ∈ (0, 50) and
other parameters were unrestricted

I Sampling distribution of MLE ν̂MLE is highly asymmetric
Sampling features to be estimated are

median(ν̂MLE), E(ν̂MLE) and P (ν̂MLE ≥ 50)
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Results: Regular Design

ν = 0.5 ν = 1.5
ϑ = 0.1 ϑ = 0.5 ϑ = 0.1 ϑ = 0.5

Scenario I
Median 0.597 0.541 1.686 1.550
Mean 1.752 0.561 2.914 1.562
% of ν̂MLE ≥ 50 1.6 0 1.1 0

Scenario II
Median 0.622 0.530 1.852 1.615
Mean 3.111 0.972 6.208 6.508
% of ν̂MLE ≥ 50 4.1 0.6 6.8 8.8

Scenario III
Median 6.239 0.961 7.846 2.359
Mean 23.210 7.352 23.220 12.065
% of ν̂MLE ≥ 50 42.8 11.6 40.5 18.5
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Results: Irregular Design

ν = 0.5 ν = 1.5
ϑ = 0.1 ϑ = 0.5 ϑ = 0.1 ϑ = 0.5

Scenario I
Median 0.528 0.524 1.572 1.527
Mean 0.571 0.549 1.654 1.539
% of ν̂MLE ≥ 50 0 0 0 0

Scenario II
Median 0.555 0.505 1.653 1.727
Mean 0.778 0.774 4.883 7.168
% of ν̂MLE ≥ 50 0.3 0.3 4.6 10.1

Scenario III
Median 0.749 0.704 1.939 2.476
Mean 6.382 3.384 9.252 13.644
% of ν̂MLE ≥ 50 10.2 4.6 12.8 21.9
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Take Home Messages

I The MLE tends to overestimate ν
I The magnitude of the bias is small when the data do not

contain measurement error, but large otherwise
I In scenario 3, ν̂MLE is quite unreliable, especially when the

strength of correlation is weak
I The bias is more severe for regular sampling designs
I P (ν̂MLE ≥ 50) is substantial, suggesting that ν̂MLE could

not only be extremely large, but may not even exist for
some data sets
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To dwell on last point, inspected profile log–likelihoods of ν
corresponding to data sets simulated on the regular design
under Scenario 3, (µ, σ2, ξ, ϑ, ν) = (0, 1, 0.2, 0.1, 0.5), and for
which the iterative algorithm indicated that ν̂MLE ≥ 50
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A Sub–class of Gaussian Matérn Random Fields

From now range ϑ and noise–to–signal ratio ξ assumed known

So ϑ = ν, Θ = (0,∞), and θ = (σ2, ν) are only unknown
covariance parameters

The case when all covariance parameters are unknown is
currently being studied
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Bayesian Analysis

L(β,θ; z)

= (2πσ2)−
n
2 |Ψν |−

1
2 exp

(
− 1

2σ2 (z −Xβ)>Ψ−1
ν (z −Xβ)

)
z = (z1, . . . , zn)>
X is he known n× p matrix with entries Xij = fj(si)

Ψν = Σν + ξIn,

with Σν the n× n matrix with entries (Σν)ij = Kν(‖si − sj‖)
If π(β,θ) is the prior distribution, then

π(β,θ | z) ∝ L(β,θ; z) · π(β,θ)

Challenge: It is very difficult to specify π(β,ϑ) subjectively,
and ad hoc methods may lead to improper or non–nonsensical
posteriors
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A Solution: Reference (Objective) Priors

I Reference Priors have been succesfully used for multitude
of models. They may depend on an ordering of parameters
by their importance

I Berger, De Oliveira and Sansó (2001) derived a prior and
its properties for a class of Gaussian models

I Extensions to other models in Paulo (2005), De Oliveira
(2007), Kazianka and Pilz (2012), Ren, Sun and He (2012),
Kazianka (2013), Ren, Sun and Sahu (2013), Gu, Wang
and Berger (2018), Gu (2019)

I All of these assume the smoothness parameter is known
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Algorithm to Compute A Reference Prior

1. Consider θ parameters of primary interest and
β parameters of secondary interest

2. Factor prior as πR(β,θ) = πR(β | θ)πR(θ)
3. Compute πR(β | θ) using Jeffreys prior, which is for this

model πR(β | θ) ∝ 1
4. Compute πR(θ) using the Jeffreys prior based on the

‘marginal model’ defined via the integrated likelihood of θ

LI(θ; z) =
∫
Rp
L(β,θ; z)πR(β | θ)dβ
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For Gaussian random field with linear mean function:

LI(θ; z) ∝ (σ2)−
n−p

2 |Ψν |−
1
2 |X>Ψ−1

ν X|−
1
2 exp

{
− S2

ν

2σ2

}
S2
ν = (z −Xβ̂ν)>Ψ−1

ν (z −Xβ̂ν)
β̂ν = (X>Ψ−1

ν X)−1X>Ψ−1
ν z

The above expressions are general (valid for any Kϑ(s,u))

45 / 73



Reference prior (BDS, 2001)

The reference prior of (β, σ2, ν) is

πR(β, σ2, ν) ∝ πR(ν)
σ2

with

πR(ν) ∝
{

tr
[{(

∂

∂ν
Ψν

)
Qν

}2
]
− 1
n− p

[
tr
{(

∂

∂ν
Ψν

)
Qν

}]2
} 1

2

where Qν = Ψ−1
ν −Ψ−1

ν X(X>Ψ−1
ν X)−1X>Ψ−1

ν
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The reference posterior distribution is proper if

∫
Rp×(0,∞)2

L(β, σ2, ν; z)π
R(ν)
σ2 dβdσ2dν =

∫
(0,∞)

LI(ν; z)πR(ν)dν

is finite, where LI(ν; z) is the integrated likelihood of ν given as

LI(ν; z) ∝ |Ψν |−
1
2 |X>Ψ−1

ν X|−
1
2 (S2

ν)−
n−p

2
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Computational & Theoretical Challenges

In spite of theoretical good properties, reference priors are
seldom used in practice for analysis of geostatistical or
computer experiments data, because:

I Evaluation of πR(ν) requires computation of Ψ−1
ν and

(X>Ψ−1
ν X)−1, which involve O(n3) operations

I Matrix Ψν is often nearly singular when ϑ or ν are large
and ξ is small, so computation of Ψ−1

ν will be unstable or
infeasible

I Except for certain special cases, computation of (∂/∂ν)Ψν

involves multiple evaluations of Bessel function Kν(x)
I It is currently unknown whether πR(β,θ | z) is proper
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Proposed Solution

Find approximation to integrated likelihood LI(θ; z) that is
more amenable for analysis and computation, and use ot to
obtain approximation to πR(ν)

Such approximation should be devoid of large matrices and, if
possible, not requiring evaluation of special functions
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Spectral Approximation in R2

This approximation is based on the spectral representation of
stationary random fields. Below I summarize the approximation
for random fields in the plane (d = 2)

The approximation relies on the spectral density function of the
random field. For the Matérn family this is σ2fν(ω), where

fν(ω) = ν(4ν)ν

πϑ2ν

(
‖ω‖2 + 4ν

ϑ2

)−(ν+1)
, ω = (ω1, ω2)> ∈ R2
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For M1, M2 positive even integers and ∆ > 0, define regular
rectangular grid in the plane

UM = {u1,1,u1,2, . . . ,uM1,M2}
= {∆, . . . ,∆M1} × {∆, . . . ,∆M2}

Let M := M1M2. Call UM ⊂ R2 the spatial design

Associated with the above, define another regular rectangular
grid in the plane

WM =
{
ω
−M1

2 +1,−M2
2 +1

, . . . ,ω0,0, . . . ,ωM1
2 ,

M2
2

}
=

2π
∆M1

{
−
M1

2
+ 1, . . . , 0, 1, . . . ,

M1

2

}
×

2π
∆M2

{
−
M2

2
+ 1, . . . , 0, 1, . . . ,

M2

2

}
Call WM ⊂ [− π

∆ ,
π
∆ ]2 the spectral design
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Illustration: M1 = M2 = 6 and ∆ = 1
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Let Z∆(k) := Z(∆k), k = (k1, k2) ∈ Z2, be the discrete index
random field defined by sampling the random field Z(·)

E{Z∆(k)} = µ(∆k)
cov{Z∆(k), Z∆(k′)} = σ2Kν(∆||k− k′||), k,k′ ∈ Z2

f∆
ν (ω) =

∑
l∈Z2

fν
(
ω + 2πl

∆
)
, ω ∈

[
− π

∆ ,
π

∆
]2

From spectral representation of Z∆(·): for ui,j = ∆(i, j)> ∈ UM

Z∆
{
(i, j)

}
= µ(ui,j) +

∫ π
∆

− π
∆

∫ π
∆

− π
∆

exp(iω>ui,j)U∆(dω)

= Z(ui,j)

i =
√
−1 and U∆(·) is zero–mean complex random orthogonal

measure in the plane (Yaglom, 1987)
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Spectral representation provides the basis to approximate the
distribution of

(
Z(ui,j) : ui,j ∈ UM

)>
It requires the following sets of indices:

IC =
{(

0, 0
)
,

(
M1

2
, 0
)
,

(
0,
M2

2

)
,

(
M1

2
,
M2

2

)}
(‘corner’ frequencies)

IB =
{(

m1, 0
)
,
(
0,m2

)
,

(
m1,

M2

2

)
,

(
M1

2
,m2

)
: m1 = 1, . . . ,

M1

2
− 1;

m2 = 1, . . . ,
M2

2
− 1
}

(‘boundary’ frequencies)

II =
{(

m1,m2
)

: m1 = 1, . . . ,
M1

2
− 1;m2 = 1, . . . ,

M2

2
− 1
}

(‘interior’ frequencies)

IE =
{(

m1,m2
)

: m1 = 1, . . . ,
M1

2
− 1;m2 = −

M2

2
+ 1, . . . ,−1

}
(‘exterior’ frequencies)

and let I := IB ∪ II ∪ IE , which has M/2− 2 elements
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Lemma
For any ui,j ∈ UM define the random object

TM1,M2 (ui,j) :=

M1
2∑

m1=−M1
2 +1

M2
2∑

m2=−M2
2 +1

exp(iω>m1,m2ui,j)Um1,m2

where Um1,m2 = Am1,m2 + iBm1,m2 be complex random variables satisfying:

(1) Bm1,m2 = 0 for (m1,m2) ∈ IC
(2) U0,−m2 = Ū0,m2 , U−m1,0 = Ūm1,0, UM1

2 ,−m2
= ŪM1

2 ,m2
and

U
−m1,

M2
2

= Ū
m1,

M2
2

for (m1,m2) ∈ IB
(3) U−m1,−m2 = Ūm1,m2 for (m1,m2) ∈ II ∪ IE
(4) For (m1,m2) ∈ IC ∪ I, Am1,m2 and Bm1,m2 are independent Gaussian
variables with means 0 and variances

var(Am1,m2 ) =
c∆σ

2

M
f∆
ν (ωm1,m2 ) if (m1,m2) ∈ IC

var(Am1,m2 ) = var(Bm1,m2 ) =
c∆σ

2

2M
f∆
ν (ωm1,m2 ) if (m1,m2) ∈ I,

where c∆ := (2π/∆)2
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Then

(a) TM1,M2 (ui,j)

= A0,0 + AM1
2 ,0

cos
(

ω
>
M1

2 ,0
ui,j

)
+ A

0,
M2

2
cos
(

ω
>
0,

M2
2

ui,j

)
+ AM1

2 ,
M2

2
cos
(

ω
>
M1

2 ,
M2

2
ui,j

)
+ 2

∑
(m1,m2)∈I

(
Am1,m2 cos(ω

>
m1,m2 ui,j)− Bm1,m2 sin(ω

>
m1,m2 ui,j)

)
and (TM1,M2 (ui,j) : ui,j ∈ UM )> has a zero–mean real multivariate normal
distribution.

(b) For any ui,j ,ui′,j′ ∈ UM it holds that as min{M1,M2} → ∞

cov{TM1,M2 (ui,j), TM1,M2 (ui′,j′ )} → σ2Kν(||ui,j − ui′,j′ ||)
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Let z̃ := (Z(u1,1), . . . , Z(uM1,M2))> and
t := (TM1,M2(u1,1), . . . , TM1,M2(uM1,M2))> = H1g, with
H1 an M ×M matrix whose columns are formed by multiples
of cosines and sines, and g =

(
. . . Am1,m2 , Bm1,m2 . . .

)>
From the lemma

z̃
approx∼ X̃β + t as min{M1,M2} → ∞

X̃ is the M × p matrix whose entries involve the covariates
measured at the locations in UM
When M1 and M2 are large

z̃
approx∼ N

(
X̃β, σ2(H1GνH

>
1 + ξIM )

)
? ?

where

Gν =
c∆
2M

diag
((

2f∆
ν (ωm1,m2 ) : (m1,m2) ∈ IC

)>
,
(
f∆
ν (ωm1,m2 ) : (m1,m2) ∈ I

)>
,(

f∆
ν (ωm1,m2 ) : (m1,m2) ∈ I

)>)
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Comments

I The spatial design UM may or may not be equal to the
sample design Sn

I When UM 6= Sn, use of the spectral approximation is
problematic to approximate the likelihood
But it is fine to approximate the prior

I UM is constructed in a way so that its convex hull contains
the region of interest D. Need to tune M1,M2 and ∆

I Bottom line: Instead of the N(Xβ, σ2Ψν) distribution, use
the N

(
X̃β, σ2(H1GνH

>
1 + ξIM )

)
distribution to

approximate the reference prior
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Approximate Reference Prior: General Mean

Theorem 1
The approximate reference prior of (β, σ2, ν) is
πAR(β, σ2, ν) ∝ πAR(ν)

σ2 , with

πAR(ν) ∝
{

tr
[{(

∂

∂ν
Λν

)
Q̃ν

}2
]
−

1
M − p

[
tr
{(

∂

∂ν
Λν

)
Q̃ν

}]2
} 1

2

where Q̃ν := Λ−1
ν −Λ−1

ν X1(X>1 Λ−1
ν X1)−1X>1 Λ−1

ν and

Λν = c∆diag
((
f∆
ν (ωm1,m2 ) : (m1,m2) ∈ IC

)>
,
(
f∆
ν (ωm1,m2 ) : (m1,m2) ∈ I

)>
,(

f∆
ν (ωm1,m2 ) : (m1,m2) ∈ I

)>)
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Approximate Reference Prior: Constant Mean

Corollary
For model with constant mean β1, the approximate reference
prior of (β1, σ

2, ν) is πAR(β1, σ
2, ν) ∝ πAR(ν)

σ2 , with

πAR(ν) ∝

{
M−1∑
j=1

γ2
ν(ωj) −

1
M − 1

(M−1∑
j=1

γν(ωj)
)2
} 1

2

with ωj is reindexing of ωm1,m2 , with ω0,0 removed, and

γν(ωj) := c∆

c∆f̃∆
ν (ωj) + ξ

(
∂

∂ν
f̃∆
ν (ωj)

)
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Theorem 2

For Matérn family, the marginal approximate reference prior
πAR(ν) is continuous function that satisfies

πAR(ν) =
{
O(1), as ν → 0+

O(ν−2), as ν →∞

so it is proper.

Furthermore, the approximate reference posterior based on the
observed data, πAR(β, σ2, ν | z), is also proper
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Comparison of Exact and Approximate Reference Priors

I D = [0, 1]2, n = 100, a regular design and 3 irregular
designs

I µ(s) = 1 and µ(s) = 0.15− 0.65x− 0.1y+ 0.9x2−xy+ 1.2y2

I Matérn model with σ2 = 1 and ϑ = 0.1, 0.3 and 0.5
I ξ = 0 and 0.5
I f̃∆

ν (ω) approximated by truncating its series so only terms
with max{|l1|, |l2|} ≤ 4 are retained
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When ξ = 0
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When ξ = 0.5
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Irregular Designs, µ = 1, ϑ = 0.3, ξ = 0.5
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Comparison of Computational Effort

p Reference Prior n = 100 n = 400 n = 1600 n = 10000

RD
1 Exact 0.82 14.54 596.17 –

Approximate 0.02 0.07 0.22 1.82

6 Exact 0.95 17.18 874.05 –
Approximate 0.11 1.07 8.04 187.45

ID
1 Exact 33.28 521.01 6310.31 –

Approximate 0.02 0.08 0.19 1.90

6 Exact 37.71 628.11 10840.67 –
Approximate 0.10 1.14 9.94 204.32
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Frequentist Properties

I Bayesian credible intervals for σ2 and ν based on πR(ν)
and πAR(ν) are similar and have good frequentist coverage

I Handcock and Stein (1993): π(ν) = (1 + ν)−2

Good inferences similar to those from πAR(ν)
I Uniform: ν ∼ unif(0, L) for some L > 0 large

Bad frequentist coverage and hugely inflated MAE
(estimates are severely upward biased)
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Bayes Better Than MLE

0 1 2 3 4 5

ν

m
a
rg

in
a
l 
p
o
s
te

ri
o
r 

o
f 

ν

−
6

2
0

−
6

1
5

−
6

1
0

−
6

0
5

0 1 2 3 4 5

ν

m
a
rg

in
a
l 
p
o
s
te

ri
o
r 

o
f 

ν

−
6

3
5

−
6

3
4

−
6

3
3

−
6

3
2

−
6

3
1

0 1 2 3 4 5

ν

m
a
rg

in
a
l 
p
o
s
te

ri
o
r 

o
f 

ν

−
6

3
0

−
6

2
9

−
6

2
8

−
6

2
7

−
6

2
6

68 / 73



Example
Consider again 467 measurements of daily rainfall collected in
Switzerland on May 8, 1986

Model: square root transformed data is Gaussian random field
with constant mean and Matérn covariance function
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Estimating ϑ and ν
The conditional reference prior is

πAR(β, σ2, ν | ϑ, ξ) = C(ϑ, ξ)πAR(ν | ϑ, ξ)
σ2 ,

and integrated likelihood of (ϑ, ξ)

m(z | ϑ, ξ) =
∫
Rp×(0,∞)2

L(β, σ2, ξ, ϑ, ν; z)πAR(β, σ2, ν | ϑ, ξ) dβdσ2dν

∝
∫ ∞

0
|Ψϑ,ξ|−

1
2 |X>Ψ−1

ϑ,ξX|
− 1

2 (S2
ϑ,ξ)−

n−p
2 C(ϑ, ξ)πAR(ν | ϑ, ξ) dν,

Choose

(ϑ̂, ξ̂) = arg max
(ϑ,ξ)∈(0,∞)2

m(z | ϑ, ξ)

= (82, 0.052)
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Results

Prior β̂1 σ̂2 ν̂
(95% CI) (95% CI) (95% CI)

R 19.790 127.517 0.888
(10.776, 28.535) (79.190, 174.109) (0.565, 1.390)

AR 19.779 131.310 0.946
(11.539, 29.224) (82.594, 177.237) (0.589, 1.424)

HS 19.828 125.257 0.851
(10.312, 28.172) (78.541, 170.664) (0.561, 1.346)

Computation times for 12000 draws from posterior:

HS: 1166 secs, AR: 1184 secs, R: 58208
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Conclusions
I The claim geostatistical data have little or no information about

smoothmess is not quite right
I Information about the range parameter ϑ displays little sensitivity to

the sampling design
I Information about ϑ increases when ν increases. This information is

largest for processes with weak correlation that are smooth
I Information about the smoothness parameter ν does display

sensitivity to the sampling design. The Regular design is the least
informative about ν, while the Random design is the most informative

I Overall and regardless of the design, the information about the
smoothness parameter ν is substantial for processes with strong
correlation that are non–smooth

I MLE of ν is severely (upward) biased when data contain measurement
error

I A Bayesian approach with a ‘good’ prior provides better inferences
I The approximate reference prior provides much better inferences, and

it is computationally feasible
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